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Institut de Ciència de Materials de Barcelona (CSIC), Campus de la UAB, 08193-Bellaterra,

Catalunya, Spain. Correspondence e-mail: jordi.rius@icmab.es

Some years ago the direct-methods origin-free modulus sum function (S) was

adapted to the processing of intensity data from density functions with positive

and negative peaks [Rius, Miravitlles & Allmann (1996). Acta Cryst. A52, 634–

639]. That implementation used phase relationships explicitly. Although

successfully applied to different situations where the number of reflections

was small, its generalization to larger problems required avoiding the time-

consuming manipulation of quartet terms. To circumvent this limitation, a

modification of the recently introduced S-FFT algorithm (that maximizes S with

only Fourier transforms) is presented here. The resulting S2-FFT algorithm is

highly effective for crystal structures with at least one moderate scatterer in the

unit cell. Test calculations have been performed on conventional single-crystal

X-ray diffraction data, on neutron diffraction data of compounds with negative

scatterers and on intensities of superstructure reflections to solve difference

structures.

1. Introduction

The solution of the phase problem of X-ray crystallography by

direct methods, i.e. from the measured intensities and the

existing relationships between their associated phases ’, can

be formulated as a constrained global minimization problem.

Two important constrained phase-refinement functions are (i)

the cosine minimal function (Debaerdemaeker & Woolfson,

1983; DeTitta et al., 1994)

RC �ð Þ ¼
�P

h

P
k

Ahk

��1 P
h

P
k

Ahk

�
cos ’�h þ ’k þ ’h�kð Þ

� I1 Ahkð Þ=I0ðAhkÞ
�2
; ð1Þ

in which the observed magnitudes are the conditional

expected values of the cosine of the triple-phase sums that, for

crystal structures belonging to P1 and containing N atoms in

the unit cell, correspond to the ratio of the modified Bessel

functions of the first and zeroth orders with argument Ahk

defined by 2N�1/2|E�h||Ek||Eh�k| (Germain et al., 1970;

Cochran, 1955); and (ii) the residual minimizing the squared

differences between the observed moduli of the structure

factors G and the calculated ones expressed in terms of the

collectivity of phases � of the strong reflections,

RG �ð Þ ¼
P
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jGHj � jGH �ð Þj
� �2

.
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where the errors or discrepancies |GH|� |GH(�)| are assumed

to be random and distributed according to a Gaussian density

function with variances �2
H. The structure factors G =

|G|exp(i ) are the Fourier coefficients of the squared density

function (corrected for form factor and thermal vibration

decay). For a unit cell with N equal scatterers and P1

symmetry, |G| is proportional to the normalized structure-

factor moduli |E| of the true structure:

Gj j ¼ ð1=N1=2
Þ Ej j: ð3Þ

Both phase-refinement functions have their own advantages

and limitations. RC was first checked by Debaerdemaeker &

Woolfson (1983) with rather poor results. However, when

alternated with peak search in real space as in the SnB strategy

(DeTitta et al., 1994), its ability to refine phases improves

dramatically. One important advantage of equation (1) is that

it only uses large E values and the triplets among them. This

keeps the number of triplets manageable even for relatively

large structures and ensures its applicability to situations

where no weak E values are available. As a counterpart it

considers individual cosine estimates, which become less

accurate as the unit-cell contents increase. From a practical

point of view, continuous switching between the reciprocal-

space part (triplets) and the real-space part (Fourier synthesis)

complicates the implementation. One of the principal differ-

ences between equations (1) and (2) is the active use of the

weak E values that the latter makes. This fact confers on RG

great robustness, so that alternating between reciprocal- and

direct-space parts is, in principle, not necessary. If the moduli

|G| are calculated with the expression (Rius, 1993)
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and the same variance is assumed for all H, minimization of

RG is equivalent to maximizing the origin-free modulus sum

function (Rius, 2006)
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where h|G|i and h|E|i are the average |GH| and |EH| values,

respectively. This function has proven very effective for

solving crystal structures. The solution is performed by

maximizing S in terms of the phases of the large reflections

with the origin-free modulus sum function tangent formula

S-TF (Rius, 1993):
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In this iterative process the  parameters are assumed to be

equal to the respective ’ parameters for the strong reflections,

whereas, for the weak ones, the  values are periodically

recalculated from the new phase estimates of the large

reflections. Unlike the original tangent formula (Karle &

Hauptman, 1956), this improved one is not affected by the

uranium-atom solution. One inherent limitation of the S

function when explicitly expressed as a function of the cosine

of the triple-phase sums is the large number of terms involved

in its computation. This is a consequence of the inclusion of

the weak E values. One way to reduce the number of triplets is

to raise the threshold limit value for considering an E value as

large in the calculation of |G| from equation (4). However, this

is at the cost of the accuracy of |G|. The number of cosine

terms becomes even larger when the density function can have

positive and negative peaks. Since in this case the approx-

imation � ’ �2 cannot be used, it is the similarity between �
and �3 that has to be employed in the definition of the

modulus sum function (Rius et al., 1996). This causes the

appearance of double summations in the numerator and in the

denominator of the corresponding modified tangent formula.

This generalized S function was applied to a superstructure of

index 2 to demonstrate that direct methods do not require the

positivity condition. It has subsequently been used for solving

projected reconstructed surface structures from in-plane

fractional rods measured by the synchrotron GIXRD tech-

nique (Torrelles et al., 1998; Hirnet et al., 2002). However, its

application to out-of-plane data is hampered by the large

number of phase relationships generated in its computation.

Recently, Rius et al. (2007) presented a new optimization

strategy of the S function that takes advantage of the fast

Fourier transform (FFT) algorithm, thus avoiding the explicit

calculation of the phase relationships. They introduce the

complex quantities

DH ¼ ðjEHj � hjEjiÞ expði HÞ ð7Þ

as Fourier coefficients of a modified density function called

�0sq. Then, in view of equations (4) and (7), S in equation (5)

can be rewritten in the form

S ¼ K
P
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with K equal to N1/2. The sum within the brackets concerns the

Fourier coefficients (Q) of the product function �Q ¼ ��
0
sq.

This product can be easily performed in real space, and the Q

coefficients are then readily obtained by Fourier inverting �Q.

The new phase estimates optimizing S are the phases of Q,

’hðnewÞ ¼ phase of Qh �oldð Þ
� 	

: ð9Þ

2. The S-FFT phase-refinement method in the absence
of the equal-sign condition

2.1. The squared-shape density function q2

Experimentally, the structure-factor amplitudes |G| of the

squared density distribution (�2) are not directly measurable

quantities. However, for crystal structures with N equal scat-

terers in the unit cell following P1 space-group symmetry, |G|

can be derived from the observed |E| through the simple

relationship (3). However, equation (3) is not valid for

structures possessing mixed positive and negative scatterers,

since � and �2 are no longer proportional. The introduction of

the so-called squared-shape density function (�2) allows this

difficulty to be circumvented. In this function the peaks have

the same shape as they have in �2 but the same signs as they

have in �. Consequently, the corresponding structure-factor

moduli |G2| are proportional to the observed |E| values and

expression (3) still holds:

G2

�� �� ¼ ð1=N1=2Þ Ej j: ð10Þ

Important for the practical application of �2 is the calculation

of |G2| as a function of the � phases. This requires the intro-

duction of the mask m(r), defined by

mðrÞ ¼

1 if �ðrÞ< t�ð�Þ
�1 if �ðrÞ< � t�ð�Þ

0 if � t�ð�Þ<�ðrÞ< t�ð�Þ;

8<
: ð11Þ

where r ranges over the whole unit cell. In general t is taken

close to 2.5. The product of �2 with m preserves in the resulting

modified density function not only the signs that the peaks

have in � but also the shapes they have in �2. Consequently the

Fourier coefficients of (�2m) are the desired G2(�). By writing

m(r) as the Fourier series

mðrÞ ¼ V�1
P
K

jMKj expði�KÞ expð�i2�KrÞ; ð12Þ

then by applying the Fourier theory, G2(�) can be expressed

in terms of the coefficients of � and m by means of the double

summation

G2;�Hð�Þ ¼V�2
P
K

jMKj
P

h
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� exp ið�K þ ’�h þ ’�Hþh�KÞ: ð13Þ
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Notice that the condition that all peaks in � have the same sign

(equal-sign condition) is not used in the derivation of equation

(13).

2.2. The S function without equal-sign condition (S2)

If both moduli |GH| and |GH(�)| are replaced in equation

(5) by the corresponding |G2,H| and |G2,H(�)|, the S2 function

results:

S2 ¼
P
H
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wherein use of equation (10) is made in the second expression.

If equation (13) is substituted for |G2,H(�)| in equation (14),

then, in view of equation (7), S2 becomes

S2 ¼V�2
P
H

DH

P
K

jMKj
P

h

jE�hjjEh�H�Kj

� exp ið�K þ ’�h þ ’h�H�KÞ ð15Þ

and, by changing the sum order, it takes the final form
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Expression (16) is the extension of the S function to the more

general situation where mixed positive and negative density-

function peaks may be present. The quantity between brackets

is the Fourier coefficient Q of the product function �Q = �02�m

(Fig. 1). For the special case that all scatterers have the same

sign, then m(r) = 1 for all r 2 V. This implies that MK will be

zero for K 6¼ 0 and equal to V for K = 0, so that equation (16)

reduces to equation (8). Introduction of Q allows equation

(16) to be written in the more compact form

S2 ¼ K
P

h

jE�hj expði’�hÞQhð�Þ: ð17Þ

Finally, in parallel to the S function, the new estimates of ’
maximizing S2 can be obtained from

’hðnewÞ ¼ phase of Qh �oldð Þ
� 	

: ð18Þ

All QH(�old) and, consequently, all new phase estimates ’, are

calculated simultaneously applying the FFT algorithm. Like

S-FFT, the S2-FFT procedure does not involve the condition

 h = ’h. Hence the refinement will produce either � or �� as

solutions when starting from random phases. The S2-FFT

phase-refinement algorithm used for maximizing the S2 func-

tion is essentially the S-FFT algorithm already published by

Rius et al. (2007), slightly modified to incorporate the mask in

the calculation of �Q. The corresponding flow chart is shown in

Fig. 1.

3. Test calculations of the S2-FFT algorithm

3.1. Comparison with S-FFT

The test calculations were performed on the intensity data

of the crystal structures summarized in Table 1 with t = 2.5 in

equation (11). The finality of these calculations is to check the

viability of the above procedure for compounds possessing at

least one medium-heavy scatterer

in the unit cell. This includes most

inorganic and coordination

compounds. Inspection of Table 1

clearly indicates that in such cases

the number of correct solutions

obtained with and without the

equal-sign condition is comparable.

This result confirms the tolerance

of the method to the presence of

scatterers with different absolute

strength in the unit cell, i.e. when

the equality (10) is only approxi-

mately fulfilled. For structures

lacking moderate scatterers, the

number of correct solutions with

S2-FFT is smaller than that with

S-FFT (e.g. Tval in Table 1). This

seems to indicate that some

improvements in the optimization
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Figure 1
S2-FFT phase-refinement procedure. The initial phases (upper right
corner) are combined with the experimental amplitudes to compute the
electron density � and the associated mask m. The mask is used to
compute the phases  of the squared-shape density function and also
(broken arrow) the product function �Q. The Fourier transform of �Q

yields the new structure-factor estimates.

Table 1
Application of the S2-FFT algorithm to single-crystal data.

The results with and without the equal-sign condition are comparable except for Tval, a purely organic
compound.

No. of correct solutions/No. of trials

Code Formula Z Space group

Without
equal-sign
condition

With
equal-sign
condition

Jul1 C9H10Cl3N3 8 P41212 3/25 3/25
Jul3 C14H22S2Si2 2 P21/n 8/25 10/25
Jul4 C11Cl10 4 P21/n 6/25 4/25
Jul5 C11HCl9 4 Pca21 22/25 25/25
Hov1 Pr14Ni6Si11 4 C2/m 21/25 22/25
Bobby C6H6CaNNaO6 4 P213 9/25 7/25
Cds Cd4SO11.5H9 4 P63 24/25 25/25
Fina13 C14H19Cl3N2O6Zn 2 P1 25/25 25/25
Cuimid C6H8ClCuN4 6 P3221 6/25 5/25
Tval C54H90N6O18 2 P1 8/121 21/25

The references for the test structures are as follows: Jul1: Julià et al. (1992); Jul3: Alemán et al. (1993); Jul4 and Jul5: Carilla et al.
(1995); Hov1: Hovestreydt et al. (1983); Bobby: Barnett & Uchtman (1979); Cds: Loüer et al. (2001); Fina13: Pons et al. (2006);
Cuimid: Clegg et al. (1984); Tval: Karle (1975) and Smith et al. (1975).



procedure are still necessary to deal with purely organic

compounds.

3.2. Application to neutron diffraction data

The utility of S2-FFT for finding negative neutron scatterers

is checked with the help of two examples. The first example

consists of its application to a perovskite-related compound

with unit formula (Bi0.75Sr0.25)MnO3, which contains the

strong negative neutron scatterer Mn (Frontera et al., 2004).

The Fermi lengths for Bi, Sr, Mn and O are, respectively, 0.853,

0.702, �0.373 and 0.580. The crystal data are a = 5.499, b =

7.770, c = 5.542 Å, space group Imma, Z = 4. The intensities

used in the calculations were extracted from the observed

powder diffraction pattern by redistributing the global inten-

sities of the overlapped peaks according to the calculated

individual intensities. The success rate is three sets from a total

of 25. Table 2 contains the peaks in the E map.

The second test example is the application of the S2-FFT

procedure to the single-crystal neutron diffraction data of the

1,3,5-triiodo-2,4,6-trimethylbenzene molecule (Fig. 2). The

single-crystal neutron diffraction study of this molecule was

published by Boudjada et al. (2002). The neutron intensities

were collected at 15 K on the D9 four-circle diffractometer at

the high-flux reactor of ILL (Grenoble, France). The mono-

chromator was a copper single crystal selecting the 220

reflection, giving � = 0.70379 Å (crystal data: a = 7.905, b =

9.510, c = 9.521 Å, �= 60.41, �= 66.64, � = 86.24�, V = 563.7 Å3;

space group: P�11; molecular formula: C9H9I3, Z = 2; crystal

dimensions: 4 � 2 � 1 mm). Owing to detector problems only

2071 reflections could be measured (�4 < h < 8, �9 < k < 9,

�9 < l < 9). Averaging of the equivalent data gave 1079

independent reflections. The Fermi lengths for C, I and H are,

respectively, 0.665, 0.528 and �0.374. The parameters defining

the direct-methods S2 phase-refinement function are h|E|i =

1.073, dmin = 0.82, (No. |E|large)/(No. |E|weak) = 0.92, strongest

|E| value = 3.46, lowest |E| value = 1.35, number of sets 100,

maximum number of cycles 39. Phase refinement with S2-FFT

in P1 always gives the correct solution (30% for P�11). Table 3

lists the peaks showing up in the E map.

3.3. Application to superstructure reflections

The application of S2 to the determination of difference

structures is illustrated using the superstructure reflections of

the double-layer mineral wermlandite (Rius & Allmann,

1984). The crystal structure of wermlandite consists of two

alternating layers: a brucite-like layer of composition

[Mg7(Al0.57Fe0.43)2(OH)18]2+ and a completely ordered inter-

layer of composition [(Ca0.6Mg0.4)(SO4)2(H2O)12]2�. The

atomic arrangement of the upper half of the interlayer is

shown in Fig. 3(a), with the atoms forming the complementary

structure (= true structure-substructure) in white (cell

dimensions: a = 9.303, c = 22.57 Å; space group: P�33c1; Z = 2).

The hkl reflections with l even are much stronger than those

with l odd (19 and 47% unobserved reflections, respectively).
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Table 2
Application of S2-FFT to neutron diffraction data.

The success rate is three from 25 trials. All atoms with absolute relative height
greater than 90 are listed. Compound data: a = 5.499, b = 7.770, c = 5.542 Å;
space group: Imma; unit formula: (Bi0.75Sr0.25)MnO3, Z = 4.

Atom
Relative
height x/a y/b z/c Site

Bi,Sr 1000 0 1/4 0.9974 4e
Mn �579 1/2 0 0 4b
O1 474 1/2 3/4 0.0501 4e
O2 409 1/4 0.0275 1/4 8g

Figure 2
View of the C9H9I3 molecule drawn from the peak positions found in the
E map after application of S2-FFT (Table 3).

Table 3
Relative heights and positions of the peaks showing up in the E map after
application of S2-FFT to neutron diffraction data.

Compound data: a = 7.905, b = 9.510, c = 9.521 Å, � = 60.41, � = 66.64, � =
86.24�; space group: P�11; molecular formula: C9H9I3, Z = 2.

Atom Height x/a y/b z/c

C1 997 0.2443 0.8996 0.9947
C2 992 0.2704 0.0061 0.8369
C3 1000 0.2625 0.1680 0.7876
C4 999 0.2544 0.2457 0.8832
C5 987 0.2468 0.1248 0.0537
C6 969 0.2320 0.9441 0.1174
I1 617 0.2434 0.6473 0.0729
I3 697 0.2813 0.3299 0.5295
I5 722 0.2007 0.2052 0.2409
C21 879 0.2793 0.9436 0.6993
C41 997 0.2576 0.4118 0.8341
C61 924 0.2275 0.8372 0.3029
H21 �380 0.1519 0.9063 0.7365
H22 �408 0.3820 0.8480 0.7231
H23 �347 0.3418 0.0169 0.5906
H41 �340 0.1376 0.4647 0.8736
H43 �334 0.3282 0.4604 0.7147
H43 �219 0.3338 0.4234 0.8984
H61 �415 0.3318 0.7445 0.2977
H62 �385 0.1213 0.7542 0.3623
H63 �185 0.2028 0.8763 0.3854



The average (h�i) and difference (� = � � h�i) structures have

the same unit cell except for the c parameter, which is doubled

for � (c = 2c0). The c0 distance corresponds to the separation

between the brucite-like main layer and the interlayer. Since

the index n of the symmetry reduction is 2, both � and �� are

equivalent. According to their symmetry, the atoms in

wermlandite can be grouped into the following:

(a) Atoms with P�33m1 symmetry, i.e. the main layer atoms

and Ca, S and the apical O atom of the sulfate group. Since

P�33m1 is the symmetry of h�i, they will not contribute to � and

will be ignored.

(b) Atoms with P�33c1 symmetry, i.e. the water molecules O4

and O5, and O6, the O atom of the basis of the sulfate group.

Since the superstructure is of index 2, the corresponding

averaged positions in h�i have half-weight. The peaks in � will

appear as separate positive and negative peaks with half-

weight.

Fig. 3(b) reproduces the electron-density distribution

obtained from the application of S2-FFT to the superstructure

reflections (27 strong and 22 weak reflections, h|E|i = 1.01, 7%

successful runs). The positive and negative maxima of � can be

clearly seen. From these peaks it is immediate to derive the

complementary structure.
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Figure 3
Application of S2-FFT to difference structures. (a) Interlayer of
wermlandite. For clarity, only the portion of the interlayer at z ’ 0.08
is presented (with the hydrogen bonds represented by double lines). The
rest of the interlayer is related by the inversion center at the origin. Ca2+

at (0, 0, 0) is octahedrally coordinated by H2O5, which is hydrogen
bonded to O6 (basis of the SO4

2� group) and H2O4. Atom O7 (apex of
the SO4

2� group) acts as an acceptor of three hydrogen bonds from H2O4
[S and O7 at (1/3, 2/3, 0.057) and (2/3, 1/3, 0.005), respectively]. Only
H2O4, H2O5 and O6 have P�33c1 symmetry. (b) Section (x, y, z ’ 0.08) of
the difference structure � of wemlandite obtained by applying S2-FFT to
superstructure intensities only (black: positive values; grey: negative
values). Notice the nearly exact correspondence between the positive
peaks of � and the positions of H2O4, H2O5 and O6 in (a). Image
obtained with FAN (Vernoslova & Lunin, 1993).


